Viewing topic: Equicontinuity

See sub-topics for Equicontinuity ... >> Mathematics >> Field Of Topology >> Equicontinuity

Highest Rated Sign

No video has been submitted for this term

Nobody has posted a sign yet.


  • Definition: Let (Y, d) be a metric space. Let F be a subset of the function space C(X, Y). If x_0 is in X, the set F of functions is said to be equicontinuous at x_0 if given epsilon greater than 0, there is a neighborhood U of x_0 such that for all x in U and all f in F, d(f(x), f(x_0)) is less than epsilon. If the set F is equicontinuous at x_0 for each x_0 in X, it is said simply to be equicontinuous.

    Source: Topology (second edition) by James R. Munkres

  • There are no comments for this topic.