Viewing topic: Inner Product

See sub-topics for Inner Product ... >> Mathematics >> Mathematical Analysis >> Inner Product

Highest Rated Sign

No video has been submitted for this term

Nobody has posted a sign yet.

Inner Product

  • Definition: An inner product is a generalization of the dot product. In a vector space, it is a way to multiply vectors together, with the result of this multiplication being a scalar. More precisely, for a real vector space, an inner product <*,*> satisfies the following four properties. Let u, v, and w be vectors and alpha be a scalar, then: 1. <u+v,w>=<u,w>+<v,w>. 2. <alphav,w>=alpha<v,w>. 3. <v,w>=<w,v>. 4. <v,v> >= 0 and equal if and only if v=0.

    Source: http://mathworld.wolfram.com

  • Listed under: Mathematical Analysis, Differential Equations

  • There are no comments for this topic.